
Task-driven Perception and Manipulation
for Constrained Placement of Unknown Objects

(Supplementary material)

Chaitanya Mitash, Rahul Shome, Bowen Wen, Abdeslam Boularias and Kostas Bekris

I. ALGORITHMIC OUTLINE

The framework proposed for integrated perception and
manipulation planning is outlined in terms of algorithmic
steps. The high-level pipeline is first described in Algo-
rithm 1. The manipulation planning primitive is represented
by Algorithm 2. Additional details of the subroutines are
specifically addressed.

A. Integrated Perception and Manipulation Planning

Algorithm 1 goes over the sequence of steps for the high-
level pipeline. The inputs to the subroutine are the sensing
information derived from a single RGB-D sensor. The object
segmentation mask Tmask refers to the segment of the target
object in the RGB-D image. Rplace is also obtained from
the point cloud at the placement location to recover the
workspace bounds for the placement region. The algorithm
proceeds over these inputs.

GetPlacement: This subroutine generates a target place-
ment pose that is fully contained within Rplace. Though
Ptarget denotes a single target pose, in the implementation
a set of candidate targets can be generated based on how
constraining the dimensions of Rplace are.

InitializeShape: The shape initialization uses the RGB-
D data from a calibrated camera and the segment for the
target object to determine the object representation O using
considerations for what part of the object is already visible S,
and the region that is currently unseen U but might belong to
the object. The initial pose is also attached to the (arbitrarily
chosen) local coordinate frame common to the S and U
points.

ManipulationPlanning: This step represents the open-
loop manipulation planning primitive and is further described
in Algorithm 2.

In line 3 ManipulationPlanning is called with the initial
and target poses, and a flag that forces the method to attempt
the initial pick in the solution. If a solution is already found
then the method can go straight to executing the solution in
Line 18. Otherwise, the failure to find the solution must be
caused because

- either the problem is not solvable given the current
placement region bounds, or

- the object representation O is too conservative.

The authors are with the Computer Science Department of Rutgers
University in Piscataway, New Jersey, 08854, USA. Email: {cm1074,
rs1123, bw344, ab1544, kb572}@rutgers.edu

In Line 6, another invocation of ManipulationPlanning, this
time with the optimistic estimate S validates whether the
problem is solvable. In the most optimistic scenario all of
the currently unseen points might be resolved to not belong
to the object. This means that the problem is not solvable if
planning fails with this optimistic representation.

PlanPick: This subroutine computes the motion of the
picking arm from its current configuration to a grasping
configuration for the object at the passed pose. The grasps
are generated over the input object representation.

As an implementation detail, the call to PlanPick on Line
7 effectively uses the picks that were discovered during the
optimistic planning step in Line 6 to narrow down a pick
that works for O and solved the problem with S.

Line 8 passes over the computed motions to the robot and
executes the pick action, at the end of which the object is
grasped by the end-effector.

The loop outlined between Lines 11-17 repeatedly at-
tempts to update the object representation by exposing new
viewpoints to the camera, and then trying to solve the
manipulation planning problem over the update shape. The
loop continues till a plan is found or up to a maximum
number of attempts.

GetNextBestView: This function returns a viewpoint Pnext

to take the object to next, based on what pose would be
expected to expose most of the unseen points.

PlanToPose: Given a target pose, this computes the arm
motion to take a currently grasped object to that pose. In Line
12, the PlanToPose subroutine is called to take the object to
the next view point, and then subsequently executed in Line
13. Once the object has reached the next viewpoint, the new
sensing information can be used to update its shape.

UpdateShape: The RGB-D data and the outcome of pose
tracking are used to update the object representation O by
augmenting the seen subset S and reducing the unseen set
U . This operation reduces the conservative nature of O. This
increases the possibility that this relaxed representation will
be sufficient to compute a solution.

Line 15 goes on to pass the updated object representation,
and attempts manipulation planning from to the target object
pose. The pickF lag is set to false here since the object has
already been picked up. If a solution is discovered at this
step the motions can be executed.

ClosedLoopExecute: In order to ensure robust execution
of the solution trajectory, careful attention must be paid to
any errors that might arise from imprecise execution, non-



Algorithm 1: IntegratedPerceptionAndManipulationPlanning
Input: Irgbd: RGB-D image of the scene

Tmask: Object segmentation mask
Rplace: Target placement region

1 {O,S,U , Pinit} ← InitializeShape(Irgbd, Tmask) . the object representation and pose are initialized

2 Ptarget ← GetPlacement(O,Rplace) . a computed placement pose for the object inside the region

3 Π← ManipulationPlanning(O,Pinit, Ptarget,T) . plan manipulation actions over the conservative object

estimate O

4 P
′

target ← GetPlacement(S, Rplace) . a computed placement pose for the optimistic estimate

5 . if no solution was found, check if the problem is solvable when using the optimistic shape S
6 if Π = ∅ and ManipulationPlanning(S, Pinit, P

′

target,T) 6= ∅ then
7 Π← PlanPick(O,Pinit) . compute motion to pick object at the initial pose

8 Execute(Π) . execute picking action

9 Π← ∅
10 . keep trying to get more views, and solve the problem with updated shape

11 while Π = ∅ or MaxAttempts() do
12 Pnext ← GetNextBestView() . Pnext keeps track of the next viewpoint for the object to try

13 Π← PlanToPose(Pnext) . compute motion to next viewpoint

14 Execute(Π) . execute motion to next viewpoint

15 O ← UpdateShape(Irgbd) . using current sensing data, update the object representation

16 Ptarget ← GetPlacement(O,Rplace) . a computed placement pose for the object inside the region

17 Π← ManipulationPlanning(O,Pnext, Ptarget,F) . attempt solution using updated shape, and

pickF lag false

18 . if a solution was found

19 if Π 6= ∅ then
20 ClosedLoopExecute(Π, O) . execute the solution with online adjustments to correct errors

Algorithm 2: ManipulationPlanning
Input: O: Object representation

Pstart: Starting pose
Pgoal: Goal pose
pickF lag, T/F toggles the pick computation

Output: Π, Solution trajectory
1 Π← ∅ . initialize solution as empty

2 . pickF lag toggles whether the pick action is performed

3 if pickF lag then
4 Π← PlanPick(O,Pstart) . compute motion to pick at the start pose, and save to solution

5 . proceed if pick worked or pickF lag is true

6 if Π 6= ∅ or pickF lag then
7 Π′ ← PlanPlace(O,Pgoal) . compute motion to directly place the object at goal pose

8 . if a direct placement failed

9 if Π′ = ∅ then
10 Π′ ← PlanHandoffPlace(O,Pgoal) . compute motion to handoff and place at goal pose

11 . if a motion to reach the object placement was found

12 if Π′ 6= ∅ then
13 Π← Π⊕Π′ . stitch together the solution

14 else
15 Π← ∅ . reset solution to be empty

16 return Π . return solution



prehensile physical interactions, and sensing noise. To that
effect, at specific discrete moments the solution motions are
readjusted to account for any discrepancy between where the
object was expected to be, and where it is sensed. During this
execution, the objective is to reuse the motions generating in
the initial solution while compensating for errors, to achieve
robust placement of the object at the target pose.

B. ManipulationPlanning

The steps involved in manipulation planning are described
in the ManipulationPlanning subroutine. This planning step
occurs solely on the information provided to it as its input,
and does not interact with sensor data. The manipulation
actions computed here are also only returned, and it is left
to the high-level pipeline to make use of the output from this
function.

Inputs: The object representation, starting pose of the
object, goal object pose are passed as input arguments. An
additional pickFlag parameter toggles whether the planning
computes the pick over the initial object pose or whether the
object has already been grasped, and the initial pick can be
skipped.

Line 3 checks the flag to invoke the pick computation
through PlanPick. If no such pick is possible, then the
problem cannot be solved. Line 6 checks this and returns
failure in Line 16. If picking succeeded or was skipped, the
placement computation can proceed in Lines 7-15.

PlanPlace: This subroutine computes the arm motions
for the picking arm to directly attempt the placement of
the object at the target pose. If a direct placement was not
possible as checked in Line 9, handoffs are attempted.

PlanHandoffPlace: Handoffs make use of a second avail-
able arm to effectively enhance reachability of the target
pose. Handoff are computed over the input object represen-
tation, and the subroutine attempts to find motions that can
hand off the object to the second arm, and then place it
using the second arm. If this works, this can be added to the
solution in Line 13.

Line 16 returns the solution that would have been popu-
lated successfully if the planning worked.

C. Generalization

The steps followed in the algorithmic outline correspond
to the pipeline that has been evaluated in the current work
to solve the constrained placement problem. The specific
implementation choices for each of the subroutines described
here would depend on the specific design choices, like the
availability of a second arm etc.

The specific underlying planning algorithms used for the
computations in ManipulationPlanning can be chosen based
on the nature of the planning problem. PlanHandoffPlace
can also be replaced with other object manipulation primi-
tives, like reorientation and regrasp, if a second arm is not
available.

Operations like GetNextBestView and motions to these
views, can be replaced by more intelligent, and application-
specific strategies.

The objective of the current work is to identify the
key considerations in designing an algorithmic framework
capable of solving the constrained placement problem for
unknown objects. The evaluations performed over real ex-
periments demonstrate the efficacy of these design choices.


