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Abstract— This work proposes a fully autonomous process to
train Convolutional Neural Networks (CNNs) for object detec-
tion and pose estimation in setups for robotic manipulation. The
application involves detection of objects placed in a clutter and
in tight environments, such as a shelf. In particular, given access
to 3D object models, several aspects of the environment are
simulated and the models are placed in physically realistic poses
with respect to their environment to generate a labeled synthetic
dataset. To further improve object detection, the network self-
trains over real images that are labeled using a multi-view
pose estimation process. Results show that the proposed process
outperforms popular training processes relying on synthetic
data generation and manual annotation.

I. INTRODUCTION

Object detection and pose estimation are frequently the
initial step of any robotic manipulation task. The state
of the art techniques for solving such visual recognition
problems are based on supervised training of Convolutional
Neural Networks (CNNs). Desirable results are typically
obtained by training CNNs using datasets that involve a
very large number of labeled images (e.g., ImageNet [1],
and MS-COCO [2]). Creating such large datasets requires
intensive human labor. Furthermore, as these datasets are
general-purpose, one needs to create new datasets for
specific object categories and environmental setups.

The recent Amazon Picking Challenge (APC) [3] has
reinforced this realization and has led into the development
of datasets specifically for the detection of objects inside
shelving units. These datasets are created either with human
annotation [4], [5] or by constraining scenes to single objects
and performing background subtraction [6]. An increasingly
popular approach to avoid manual labeling is to use synthetic
datasets generated by rendering 3D CAD models of objects
with different viewpoints. Synthetic datasets have been
used to train CNNs for object detection [7] and viewpoint
estimation [8]. One major challenge in using synthetic
data is the inherent difference between virtual training
examples and real testing data. There is a considerable
interest in studying the impact of texture, lighting, and
shape to address this disparity [9]. One issue with synthetic
images generated from rendering engines is that they
display objects in poses that are not physically realistic.
Moreover, occlusions are usually treated in a rather naive
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manner, i.e., by applying cropping, or pasting rectangular
patches, which again results in unrealistic scenes [7] [8] [10].

This work proposes an automated system for generating
and labeling datasets for training CNNs. In particular, the
two main contributions of this work are:

• a simulator that uses the information from camera
calibration, shelf or table localization to setup an envi-
ronment, performs physics simulation to place objects at
realistic configurations and renders images of scenes to
generate a synthetic dataset to train an object detector,

• and a lifelong self-learning system that uses the object
detector trained with our simulator to perform a robust
multi-view pose estimation with a robotic manipulator,
and use the results to correctly label real images in all
the different views. The key insight behind this system
is the fact that the robot can often find a good view
that allows the detector to accurately label the object
and estimate its pose. The object’s predicted label is
then used to label images of the same scene taken from
more difficult views.

Please refer to [12] for an extended version of this work. For
transparency, the software and data for the proposed system,
are publicly available at http://www.cs.rutgers.
edu/˜cm1074/PHYSIM.html

II. TECHNICAL DETAILS
The problem statement that we consider is: given a

discrete set of sensing configurations of the manipulator and
a list of known objects that might appear in the scenes, our
objective is to generate a labeled dataset that mimics the
data from sensor. Quality of the dataset will be evaluated
by using it to train a CNN based object detector and testing
it’s performance on data received from the sensor itself. We
approach the problem in two broad steps of physics-aware
simulation and real-world adaptation.

The first component is a physics-aware simulator that
generates realistic synthetic data. The pipeline for the
process is depicted in 1. This module has been implemented
using the Blender Python API which internally uses Bullet
for physics simulation. We start with creating texture
mapped 3D CAD models of the known objects and the
resting surface such as a shelf or a table in Blender. A
RANSAC[13] based approach is used to calibrate the
resting surface. Once the resting surface is localized, object
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Fig. 1: Pipeline for physics aware simulation. The 3D CAD models are generated and loaded in a calibrated environment
on the simulator. A subset of the objects is chosen for generating a scene. Objects undergo physics simulation to settle
down on the resting surface under the effect of gravity. The scenes are rendered from known camera poses and perspective
projection is used to compute 2D bounding boxes for each object. The labeled scenes are used to train Faster-RCNN [11]
object detector, which is tested on real world setup.

selection and and initial poses for each scene are chosen
uniformly at random within a domain defined by the
geometry of the resting surface. Once initialized, the objects
fall due to gravity, bounce, and collide with each other
and with the resting surfaces. Any inter-penetrations among
objects are appropriately treated by the physics engine. The
final poses of the objects, when they stabilize, resemble
real-world poses. The simulated scene is then rendered from
multiple views using the camera poses computed from the
known sensing configurations of the robot. The illumination
of the scene is approximated by using point light sources
which are varied with respect to location, intensity, and
color for each rendering. Finally, perspective projection is
applied to obtain 2D bounding box labels for each object
in the scene. The overlapping portion of the bounding
boxes for the object that is further away from the camera
is pruned. The synthetic dataset generated from the above
process is used to train Faster R-CNN [11] based object
detector with deep VGG network architecture [14].

Given access to an object detector trained with the
physics-aware simulator, the self-learning pipeline as
depicted in figure 2 precisely labels real world images using
a robust multi-view pose estimation. This is based on the
idea that the detector performs well on some views, while
might be imprecise or fail in other views, but aggregating
3d data over the confident detections and with access
to the knowledge of the environment, a 3d segment can
be extracted for each object instance in the scene. This
combined with the fact that we have 3d models of objects,
makes it highly likely to estimate correct 6D pose of objects

given enough views and search time. We use Super4PCS
[15] to perform model matching. The confident success
in pose estimation is then projected back to the multiple
views, and used to label real images. These examples are
very effective to reduce the confusion in the classifier for
novel views. The process also autonomously reconfigures
the scene using manipulation actions to apply the labeling
process iteratively over time on different scenes, thus
generating a labeled dataset which is then used to re-train
the object detector. The PRACSYS motion planning library
is used for performing the manipulation actions.

III. EVALUATION

We evaluate our system on the benchmark dataset released
by Team MIT-Princeton [6] in the APC 2016 framework.
The experiments are performed on 148 scenes in the shelf
environment with different levels of lighting and clutter. The
scenes include 11 objects used in APC with 2220 images
and 229 unique object poses. The objects were chosen
to represent different geometric shapes, however ignoring
the ones which did not have any depth information. The
standard Intersection-Over-Union (IoU) metric is used to
evaluate the performance in object detection task. For 6D
pose estimation success is evaluated as the percentage of
predictions with an error in translation less than 5cm and
mean error in the rotation less than 15o. Evaluations for
the object detection task can be found in Table 3. We
compare our results to the benchmark performance [6],
where the training images are real images of single objects
labeled by background subtraction. We further demonstrate
the importance of placing objects at physically realistic
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Fig. 2: Self-learning pipeline. Detector trained with simulated data is used to detect objects from multiple views. The point
cloud aggregated from successful detections undergoes 3d segmentation. Super4PCS [15] is used to estimate 6D pose of the
object in world frame. The computed poses with high confidence values are simulated and projected back to the multiple
camera views to obtain precise labels over real images.

Training dataset succ
Benchmark (MIT-Princeton) [6] 75%
synthetic data with known pose distribution 69%
synthetic data with uniform pose distribution 31%
physics simulation (Our) 64%
physics simulation, varying illumination (Our) 70%
adding data with multi-view self labeling (Our) 82%

Fig. 3: Object detection results on Princeton Shelf&Tote
dataset

poses in the simulation and the utility of randomization
with respect to the unknown parameters such as illumination.

The utility of our training in localizing highly occluded
objects from multiple views, is reflected in the performance
on the 6D pose estimation task 4. We compare our system
to that of the MIT-Princeton team for APC 2016, where
the system uses a semantic segmentation framework [16]
trained with a dataset of real images. It is interesting to note
that our success in pose estimation task is at par with the
success achieved when using ground-truth bounding boxes.
This identifies the need for an efficient global reasoning for
pose estimation which is generally ignored because their
computation complexity.

Object recognition/model matching pose succ(%)
FCN/PCA, ICP [6] 54.6%
ground-truth bounding-box/PCA, ICP 84.8%
RCNN/Super4PCS (Our-training) 75.0%
RCNN/PCA, ICP (Our-training) 79.4%

Fig. 4: Pose Estimation results using different object recog-
nition and model matching techniques.

IV. FUTURE WORK

In this work we presented a system to autonomously
generate data to train CNNs for object detection and pose
estimation in robotics. Even though the physics simulation
contributes significantly in the training process, there exists
a dataset bias in simulated data with respect to texture and
illumination which we tackled by randomization and adding
self-labeled real examples. In the future, we would like
study how could learning the unknown parameters of the
simulation such as illumination and model properties help
improve the training, and secondly, how to efficiently use
such a simulation for global reasoning in the pose estimation
problem.

REFERENCES

[1] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.



[2] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in European Conference on Computer Vision. Springer,
2014, pp. 740–755.

[3] “Official website of Amazon Picking Challenge,” 2016.
[4] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel, “Bigbird:

A large-scale 3d database of object instances,” in Robotics and
Automation (ICRA), 2014 IEEE International Conference on. IEEE,
2014, pp. 509–516.

[5] C. Rennie, R. Shome, K. E. Bekris, and A. F. De Souza, “A dataset
for improved rgbd-based object detection and pose estimation for
warehouse pick-and-place,” IEEE Robotics and Automation Letters,
vol. 1, no. 2, pp. 1179–1185, 2016.

[6] A. Z. et al., “Multi-view self-supervised deep learning for 6d
pose estimation in the amazon picking challenge,” arXiv preprint
arXiv:1609.09475, 2016.

[7] X. Peng, B. Sun, K. Ali, and K. Saenko, “Learning deep object
detectors from 3d models,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 1278–1286.

[8] H. Su, C. R. Qi, Y. Li, and L. J. Guibas, “Render for cnn: Viewpoint
estimation in images using cnns trained with rendered 3d model
views,” in Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 2686–2694.

[9] B. Sun and K. Saenko, “From virtual to reality: Fast adaptation of
virtual object detectors to real domains,” in Proceedings of the British
Machine Vision Conference. BMVA Press, 2014.

[10] Y. Movshovitz-Attias, T. Kanade, and Y. Sheikh, “How useful is photo-
realistic rendering for visual learning?” in Computer Vision–ECCV
2016 Workshops. Springer, 2016, pp. 202–217.

[11] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.

[12] C. Mitash, K. Bekris, and A. Boularias, “A self-supervised learning
system for object detection using physics simulation and multi-view
pose estimation,” arXiv:1703.03347, 2017.

[13] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395,
Jun. 1981. [Online]. Available: http://doi.acm.org/10.1145/358669.
358692

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[15] N. Mellado, D. Aiger, and N. K. Mitra, “Super 4pcs fast global point-
cloud registration via smart indexing,” Computer Graphics Forum. Vol.
33. No. 5, 2014.

[16] E. Shelhamer, J. Long, and T. Darrell, “Fully Convolutional Networks
for Semantic Segmentation.”

http://amazonpickingchallenge.org
http://doi.acm.org/10.1145/358669.358692
http://doi.acm.org/10.1145/358669.358692
http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf
http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf

	INTRODUCTION
	TECHNICAL DETAILS
	EVALUATION
	FUTURE WORK
	References

