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6D Pose Estimation Problem

Objective:

◮ Input: RGB-D scene, CAD models for known
objects in scene.

◮ Output: Translation (t ∈ R3) and Rotation
(R ∈ SO(3)) for each object.

Popular Pose Estimation Pipeline:
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Motivation

◮ Collecting labeled training data requires substantial
manual effort. Our goal is to train the CNN using
synthetic data.

◮ Often hard segmentation decision results in over/under
segmentation due to the domain gap between synthetic
and real data.

Prior algorithms like Super4PCS,

◮ Use deterministic segments, resulting in
sub-optimal solutions in the above mentioned error
cases.

◮ Randomly sample set of points on the segment and
find congruent sets on the object model. This requires
several iterations to get a high probability of success.

Proposed Solution

◮ We propose to use a stochastic representation of the
output from FCN for model registration.

◮ We combine a global geometric descriptor with the soft
segmentation output of the CNN to propose a fast and
robust optimization process.
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Scene Sampling

◮ The objective of this step is to sample a set of 4 points B = {b1, b2, b3, b4}
on the scene with a high joint probability of these points belonging to the
object Ok

Input image (I) Prior: π(pi ∈ Ok)
Object models
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1, if | MAP(Mk, PPF(bi, bj)) |> 0

0, otherwise
(3)

where, φnode is the independent pixel probability from FCN, φedge is the pairwise
probability computed from lookup table (MAP) generated in pre-processing step.

Model pre-processing

◮ Point pair features are computed for each pair of
points on the object model.

PPF(m1, m2) = (|| d ||2,∠(n1, d),∠(n2, d),∠(n1, n2))

◮ A lookup table is generated for each object, that maps feature vectors to a set of
pair of points that share the same point pair features.

MAP(Mk, f ) : f → {(mi, mj) ∈ Mk | PPF(mi, mj) = f )}

Congruent Set Matching

◮ For the sampled base, a set of congruent 4-points
is found on the model.

◮ Congruency is determined by pair of points sharing
the same features and intersecting line segments
maintaining affine invariant ratios.

◮ Pointset alignment score is computed for
each pose hypothesis generated from congruent
sets.

Experiments

◮ We evaluate the accuracy of the pose with
highest pointset alignment score.

◮ Area under the accuracy-threshold curve
(AUC) is used to evaluate pose success on
the YCB dataset.

Method Pose success Time

PoseCNN 57.37% 0.2s
PoseCNN+ICP 76.53% 10.6s
PPF-Hough 83.97% 7.18s
Super4PCS 87.21% 43s
V4PCS 77.34% 4.32s
StoCS (OURS) 90.1% 0.59s

◮ Mean rotation and translation error is
reported on the Amazon picking challenge
(APC) dataset for different registration
techniques.

Method Rot. error Tr. error Time

Super4PCS 8.83◦ 1.36cm 28.01s
V4PCS 10.75◦ 5.48cm 4.66s
StoCS (OURS) 6.29◦ 1.11cm 0.72s

Robustness test with varying
segmentation accuracy

Anytime results for different
registration techniques

◮ Computation time for the different components of the registration process.

Method Base Sampling Set Extraction Set Verification #Set per base

Super4PCS 0.0045s 2.43s 19.98s 1957.18
V4PCS 0.0048s 1.98s 0.36s 46.61
StoCS (OURS) 0.0368s 0.27s 0.37s 53.52
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